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Math/CS 6¢
Assignment #4
Wednesday April 30th at 1:00 pm.

Study the attached handout describing an algorithm for transforming a wif A to a cnf
formula B, so that
A is satisfiable iff B is satisfiable,

and prove the correctness of this algorithm.

(i) Using resolution, show that p A ¢ A r is logically implied by the following set of
formulas:
{p=¢ qg=rr=p pVqVvr}

(i) Using resolution, show that
(=P A=g AT)V (mp A=r) V(g AT) VP
is a tautology.

A formula A in conjunctive normal form is called a Horn formula if every conjunct of
A contains at most one propositional variable (but can contain any number of negated
propositional variables). For example,

(pV—q) A(—gV-pVr),

—q A\ =p,

are Horn formulas, but
(pV=g)A(=gV—pVrVs)

1S not.

If we write g1 A -+- A g, — 0 instead of =¢q; V ---V —¢q,, 1 — ¢ instead of ¢, and
g1 N\ Ag, — qinstead of =g V -V =g, V q, then the Horn formulas are just the
conjunctions of formulas of the form:

QAN N = 0,

Ga N NGy —q,
1—q,

where q1, ¢, . . ., qn, q are propositional variables.
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(i) Write the above two examples of Horn formulas in that form.

(ii) Consider the following efficient algorithm for testing satisfiability of a Horn formula
A:

(a) First, mark all the propositional variables p such that 1 — p appears in A.
(

b) Next, for any conjunct of the form ¢; A -+ A g, — ¢q with all ¢, ...,q, already
marked, mark ¢q. Repeat this as long as there are such conjuncts with ¢y, ..., ¢, marked
at an earlier stage.

If after doing all that we have exhausted all the conjuncts, output:

“A is satisfiable”.

(c) Otherwise, if there is a conjunct of the form ¢; A---Ag, — 0, where ¢, ..., g, have
been already marked, then output:

“A is unsatisfiable”;

otherwise output again:
“A is satisfiable”.

Prove the correctness of this algorithm.

(iii) Apply it to the following examples:

Al =pAgATr = 0OA(=0O)ATr—=>pD Al —=>r)A1 =g Au—s A1 u),
Ay=(pAgNAt—=0)ANEt—=0)ATr—=>pD AL —=>r)A1 =9 Au—s)A1—u).



Handout
Transformation of a formula A to a formula B in conjunctive normal form,
so that A s satisifable iff B is satisfiable.

Given a formula A, consider its parse tree T4. To each node a of Ty associate a proposi-
tional variable p,, so that:

i) If a is terminal, then p, = p, where p is the propositional variable occurring at a;

ii) If a is a non-terminal node, p, is different from all the propositional variables occurring
in A;

iii) To distinct nodes we assign distinct variables.

For each node a which is not terminal, we have one of the following five possibilities

(BVv(C) (BAC)
a—9*B a — a —
b—¢*B b—>B ot c b—>B ot ¢
(B=C) (B« (C)

0/7‘\ a —
= -~
b= ¢ b= oo

In the first case, associate to a the formula:

Da <= T1Pb (1>

In the second, associate to a the formula:

Pa < (P V pe) (2)
In the third case, the formula:

Da <~ (pb A pc) (3)
In the fourth case, the formula

Pa & (Po = Pe) (4)
and in the fifth, the formula

Pa <= (pb < pc) (5>

Now (1) is equivalent to

(1) (=pa V =0p) A (Pa V p1);
(2) is equivalent to

(2) (pa Vou Voe) A (mpp V pa) A (7pe V Pa);



(3) is equivalent to

(3) (=pa V' pu) A (=pa V pe) A (=ps V =pe V Pa);

(4) is equivalent to

(4') (=pa V =5 Vo) A (Pa V 25) A (Do V —Pe);

and (5) to

(5") (=pa V=6 V pe) A (mpa V pu V=) A (Pa vV =pp Y mpe) A (Do V Do V De)-

Letting 0 be the root of the parse tree of A, define B to be the formula which is the
conjunction of py and each of the formulas of type (1’) — (5') corresponding to each node of
the parse tree of A. Then A is satisfiable iff B is satisfiable.

Notice that each conjunct of B has at most 3 literals.

Ezample: A= (-pV q) = (r = p)

TAZ A
=
—pVq T=0Pp
V =
-p qr p

B'=poA(poe (0o =p:) AN (0s € paVa)A(pe = (r=D)) A (pa & —p),
B =poA(=poV sV pe) AoV ps) A@oV —pe) A(=ps VooV aq)A(—paV pp)A
A (=g V pp) A (mpe V=1V p) A (pe V1) A (pe V=) A (mpa V =p) A (pa V ).



