

Ma 117b Homework #2

Due Tuesday, February 4th at 1:00pm

- (20 points) Prove the following facts from the notes. For every $n \in \mathbb{N}$ we have:
 - Δ_n^0 does not have the enumeration property,
 - Σ_n^0 and Π_n^0 are not closed under complements,
 - Σ_n^0 is not closed under \forall quantification, and Π_n^0 is not closed under \exists quantification,
 - $\Sigma_n^0 \cup \Pi_n^0 \subsetneq \Delta_{n+1}^0$ and $\Delta_n^0 \subsetneq \Sigma_n^0, \Pi_n^0$.
- (30 points) Let $\{\varphi_e\}$ be an acceptable, effective enumeration of the partial recursive functions. Show that the set $\{e : \varphi_e \equiv 0\}$ is complete Π^0_1 .
- (15 points) Consider the structure of arithmetic $\mathcal{N} = \langle \mathbb{N}, <, +, \cdot, S, 0 \rangle$
 - Translate into the language of arithmetic the following sentences or expressions in English:
 - Every nonzero natural number is the successor of some natural number.
 - x is divisible by y .
 - 5 is a prime number.
 - Every natural number is the sum of four squares (of natural numbers).
 - The product of any two consecutive natural numbers is even.
 - x and y are prime to each other.
 - For all x, y, z if x divides $y \cdot z$ and x is prime to y , then x divides z .
 - Translate into English the following:
 - $\neg \forall x \exists y (y^2 = x)$
 - $\forall x [\exists y (x = 2 \cdot y) \Rightarrow \exists y (x^2 = 4 \cdot y)]$
 - $\forall x \exists y [x < y \wedge y \neq 1 \wedge \neg \exists z \exists w (z \cdot w = y \wedge z < y \wedge w < y)]$
 - $\forall x \forall y [x < y \Rightarrow \exists z (z \neq 0 \wedge x + z = y)]$
 - $\forall x \forall y [(\exists z (x = 2 \cdot z) \wedge \exists w (y = 2w)) \Rightarrow \exists u (x + y = 2 \cdot u)]$
- (15 points) Find the free and bound variables in the formulas below:
 - $\forall x \exists y P(y, x)$
 - $\forall y [R(x, y) \Rightarrow \exists x Q(x)]$
 - $R(x, a) \vee R(y, b)$
 - $\forall x R(x, y) \vee \exists y [R(x, y) \wedge Q(y)]$
- (15 points) In which of the following formulas is there a free occurrence of x ?
 - $\forall x R(x)$,
 - $\exists y \forall x P(y, z)$,
 - $\forall x [P(x, y) \Rightarrow \forall y Q(x)]$,
 - $\forall x \exists y P(x, y) \wedge \forall y (Q(y) \Rightarrow P(x, x))$
- (25 points)
 - Prove the following formulas are not logically valid:
 - $\forall x (P(x) \vee Q(x)) \Rightarrow (\forall x P(x) \vee \forall x Q(x))$
 - $(\exists x P(x) \wedge \exists x Q(x)) \Rightarrow \exists x (P(x) \wedge Q(x))$
 - $(\forall x P(x) \Rightarrow \forall x Q(x)) \Rightarrow \forall x (P(x) \Rightarrow Q(x))$

iv) $(P(x) \Leftrightarrow Q(x)) \Leftrightarrow (x = y)$

b) Does the sentence $\forall x \forall y \forall z [(R(x, y) \wedge R(y, z)) \Rightarrow R(x, z)]$ logically imply the sentence $\forall x \forall y [R(x, y) \vee R(y, x)]$?

7. (15 points)

a) Consider the first order language $L_0 = \emptyset$ with no nonlogical symbols. Its structures consist only of nonempty sets A , i.e., they have the form $\mathcal{A} = \langle A \rangle$.

- If $\langle A \rangle \models \forall x \forall y (x = y)$, what can you say about A ?
- If $\langle A \rangle \models \exists x \exists y (x \neq y)$, what can you say about A ?
- If $\langle A \rangle \models \exists x \exists y \exists z [x \neq y \wedge y \neq z \wedge x \neq z \wedge \forall w (w = x \vee w = y \vee w = z)]$, what can you say about A ?

b) Consider the first order language whose only nonlogical symbol is the binary relation symbol R . Its structures are of the form $\mathcal{A} = \langle A, R^A \rangle$, where R^A is a binary relation on A . For simplicity, we will just write $\langle A, R \rangle$.

- Write a sentence σ of this language such that $\langle A, R \rangle \models \sigma$ iff $R = A \times A$.
- Write a sentence τ of this language such that $\langle A, R \rangle \models \tau$ iff $R = \emptyset$.
- Write a sentence π of this language such that $\langle A, R \rangle \models \pi$ iff R contains exactly one pair.